

Welcome to SCM Backup’s documentation!

[image: _images/logo128x128.png]
SCM Backup is a tool which makes offline backups of your cloud hosted source code repositories, by cloning them.

It will support backing up from multiple source code hosters (starting with GitHub) and backing up multiple users/teams per source code hoster.

	Source code [https://github.com/christianspecht/scm-backup/]

	Website [http://scm-backup.org/]

	Download latest release [http://scm-backup.org/downloads/]

It’s written in .NET Core [https://dotnet.github.io/], which means it’s supposed to run on Windows, Linux and MacOS.

Note

SCM Backup 1.0 was just released, but the initial documentation is not yet finished. Please check again in a few days!

Contents:

	Introduction
	How does it work?

	Installation
	System Requirements

	Download

	How to run

	Configuration
	General Options

	Sources

	Restoring your backups
	Restoring Git repositories

	How to Contribute
	Contribute to the application

	Contribute to the documentation

	Making a new release

	Legal Stuff
	License

	Acknowledgements

Introduction

SCM Backup is a tool which makes offline backups of your cloud hosted source code repositories, by cloning them.

How does it work?

SCM Backup uses the respective hoster’s API to get a list of all your repositories hosted there.

Then, it uses the respective SCM (e.g. Git [https://git-scm.com/] and/or Mercurial [https://www.mercurial-scm.org/], which need to be installed on your machine if you have at least one repository of the given type) to clone every repository into your local backup folder - or just pull the newest changes, if it already is in your local backup folder.

Installation

System Requirements

.NET Core 2.0

SCM Backup is written in .NET Core [https://dotnet.github.io/], the cross-platform version of .NET.

The available releases are framework-dependent deployments [https://docs.microsoft.com/en-us/dotnet/core/deploying/], which means that the same download should work on any Windows, Linux and MacOS machine, as long as .NET Core is installed on it.

If it’s not on your machine, you can get it from the official download page [https://www.microsoft.com/net/download]. You need at least version 2.0 of the .NET Core runtime.

Note

So far, SCM Backup has been written and tested on Windows only. Technically, it should run on Linux and MacOS as well, but this has not been tested yet.

Source control software

SCM Backup doesn’t come with its own versions of Git [https://git-scm.com/] and/or Mercurial [https://www.mercurial-scm.org/], so the respective SCM needs to be installed on your machine if you have at least one repository of the given type.

By default, SCM Backup expects all source control software to be in your path, so it just needs to execute git, hg etc. without a complete path, although it’s possible to specify the path to the executable in the config.

Note that at runtime, SCM Backup checks the presence of all required SCMs on your system. It will stop if you have repositories needing a SCM which is not present on your system.

Download

At the moment, there are only .zip downloads.

Download the .zip file from the latest release [https://github.com/christianspecht/scm-backup/releases/latest] and unzip it into a folder of your choice.

How to run

Warning

You should edit the configuration file before running SCM Backup for the first time!

Read the guide for more information.

The actual application is in the ScmBackup.dll library. You can execute it with the dotnet command:

dotnet ScmBackup.dll

For Windows, there’s a batch file named ScmBackup.bat which does exactly that.

Configuration

SCM Backup is configured in YAML [https://en.wikipedia.org/wiki/YAML], by editing the config file settings.yml.

General Options

localFolder

The folder (on the machine where SCM Backup runs) where all the backups will be stored.

The folder must already exist, SCM Backup won’t create it.

Example:

localFolder: "c:\\scm-backup"

waitSecondsOnError

When an error occurs, SCM Backup will wait that many seconds before exiting the application.

Example:

waitSecondsOnError: 5

scms

SCM Backup uses the source control software already installed on your system. By default, it assumes that the required SCMs are installed in your path.

If this isn’t the case, or if you have multiple versions of the same SCM on your system and want SCM Backup to use a specific one, you can specify the complete path to the executable in the config file.

Example:

scms:
 - name: git
 path: "c:\\git\\git.exe"

Sources

SCM Backup will be able to backup from multiple source code hosters, and multiple accounts per hoster.

For example, your GitHub user may be a member of an organization [https://help.github.com/articles/about-organizations/], and you may want to backup all repositories of your user, and all repositories of that organization.

In SCM Backup terms, these would be two different sources: your GitHub user would be one source, and the organization would be a second one.

You can define as many sources as you want in the config file, in this format:

sources:

 - title: some_title
 hoster: github
 type: user
 name: your_user_name

 - title: another_title
 hoster: github
 type: org
 name: your_org_name

Each source must have at least those four properties:

title

Must be unique in the whole config file.

For each source, SCM Backup will create a sub-folder named like the source’s title in the main backup folder.

hoster

The source code hoster from which you want to backup. See the sub-pages for valid values for each hoster.

type

Either user or org, depending if you want to backup an user or a organization.

name

The name of the user/organization you want to backup.

There are more possible options (for authentication, for example), but these can vary depending on the source code hoster.

See the respective sub-page for detailed documentation per hoster:

	GitHub
	Sources

	Authentication

GitHub

Configuration settings for backing up repositories from GitHub.

Sources

For the basics, please read the Sources section first.

For GitHub, the hoster entry in the config file needs to look like this:

hoster: github

Authentication

Without authentication, SCM Backup can only backup your public repositories.

In this case, it shows a warning:

[image: _images/config-github-auth-warning.png]
To backup your private repositories as well, you need to authenticate:

	To backup a user’s repositories, you need to authenticate with that user.

	To backup an organization’s repositories, you need to authenticate with a user who has sufficient permissions to that organization’s repositories.

Create a personal access token [https://github.com/blog/1509-personal-api-tokens] for SCM Backup for that user:

	In the user’s settings on GitHub, create a new token [https://github.com/settings/tokens/new]. Give it at least the repo:status scope.

This scope allows SCM Backup to get a list of that user’s repositories via the GitHub API [https://developer.github.com/v3/] (read more about scopes [https://developer.github.com/apps/building-oauth-apps/scopes-for-oauth-apps/]).

	Put the username and the token into the authName and password properties of the source in the config file.

Example:

sources:

 - title: some_title
 hoster: github
 type: org
 name: your_org_name
 authName: your_user_name
 password: your_token

This will backup the repositories of the organization your_org_name, but authenticate with the user your_user_name.

Restoring your backups

Generally, SCM Backup creates local repositories and pulls from the remote repositories into the local ones.

Those local repositories are bare repositories, i.e. they don’t contain a working directory.

When you look inside the repository directories, you’ll see some directories and files, depending on whether it’s a Git/Mercurial/etc. repository.

Your complete history and your source code are in there - you just don’t see the actual files!

The repository is backed up without a working directory, because it’s not necessary.

All the data already exists inside the repository, a second copy of everything in the working directory would just be a waste of space.

The easiest way to restore your working directory is to clone the bare repository that SCM Backup created (called bare-repo in the examples), which will create a clone with a working directory (called working-repo in the examples).

For more details, please see the sub-page for the respective SCM:

	Restoring Git repositories

Restoring Git repositories

How a bare repository looks like

It contains a few folders (objects, refs…) and some files.

How to restore

Clone the bare repository into a “regular” one:

git clone bare-repo working-repo

working-repo will have a working directory.

How to Contribute

	Contribute to the application
	How to run the integration tests

	Contribute to the documentation
	Headlines

	Making a new release
	1. Determine the new version number

	2. Release the application

	3. Release the docs

Contribute to the application

How to run the integration tests

For each supported hoster, SCM Backup needs to:

	make API calls to get a list of repositories

	use Git/Mercurial etc. to clone repositories

So there are integration tests for each hoster which do these things as well, some of them with authentication.

We created test users especially for these tests (for example: user [https://github.com/scm-backup-testuser/] and organization [https://github.com/scm-backup-testorg] used for GitHub integration tests), but of course we can’t publish their passwords.

So in order to run any of these integration tests, you need to setup your own test users and test repositories.

SCM Backup’s integration tests read the users, password etc. from a file named environment-variables.ps1 in the main project directory, which is not in the repository.

You need to create your own by copying/renaming environment-variables.ps1.sample [https://github.com/christianspecht/scm-backup/blob/master/environment-variables.ps1.sample], and changing the values.

Contribute to the documentation

The documentation is built with Sphinx [http://www.sphinx-doc.org/] and hosted on Read the Docs [http://readthedocs.org/projects/scm-backup-docs/].

The source code is here on GitHub [https://github.com/christianspecht/scm-backup-docs/].

Headlines

To make sure that the Read the docs Sphinx theme renders correctly, it’s important that the headline styling is consistent across the whole documentation [https://github.com/rtfd/sphinx_rtd_theme#how-the-table-of-contents-builds].

SCM Backup’s documentation uses these stylings:

	===== for level 1 (the top headline of each page)

	----- for level 2

	+++++ for level 3

Making a new release

To make a new release version, the following steps must be followed:

1. Determine the new version number

SCM Backup uses Semantic Versioning [https://semver.org/].

The new version number must be in “three-digit” MAJOR.MINOR.PATCH format, for example 1.0.0 !!

2. Release the application

Each push to master creates a new CI build on AppVeyor [https://ci.appveyor.com/project/ChristianSpecht/scm-backup] anyway.

Create a new release by creating a Git tag in the main repository [https://github.com/christianspecht/scm-backup] with the new version number.

The CI build will recognize this and automatically use this version number to create a new GitHub release [https://github.com/christianspecht/scm-backup/releases].

Note

Don’t forget to actually push the tag! Git doesn’t do this automatically.

	From the command line, it’s git push origin 1.0.0.

	In Git GUI [https://git-scm.com/docs/git-gui], you need to set this checkbox when pushing:

[image: _images/contribute-git-push-tags.png]

3. Release the docs

	Set the version [http://www.sphinx-doc.org/en/stable/config.html#confval-version] and release [http://www.sphinx-doc.org/en/stable/config.html#confval-release] numbers in the Sphinx configuration file [https://github.com/christianspecht/scm-backup-docs/blob/master/source/conf.py] conf.py to the new version number.

Set version to the short X.Y format, e.g. 1.0.

Set release to the full three-digit format determined in step 1, e.g. 1.0.0.

Apparently Read the Docs uses this number at least in the automatically created PDF.

	Create the same “version number” Git tag (like in the main repository) in the documentation repository as well.

This will create a version of the documentation for this release, making use of Read the Docs’ versioning capabilities [http://docs.readthedocs.io/en/latest/versions.html].

Legal Stuff

License

SCM Backup is licensed under the GPL [https://www.gnu.org/licenses/gpl-3.0.en.html].

Acknowledgements

SCM Backup uses the following OSS projects:

	Json.NET [https://www.newtonsoft.com/json]

	NLog [http://nlog-project.org/]

	RichardSzalay.MockHttp [https://github.com/richardszalay/mockhttp]

	Simple Injector [https://simpleinjector.org]

	xUnit.net [https://xunit.github.io/]

	YamlDotNet [https://github.com/aaubry/YamlDotNet]

Special thanks to Steven [https://github.com/dotnetjunkie] for invaluable advice [https://github.com/simpleinjector/SimpleInjector/issues/256].

Index

 _static/up.png

_images/config-github-auth-warning.png
stem32\cmd.exe

ISCM Backup 1.8.8.7115¢c1c
fhttp:/sscn-backup.org,
fcome _source: AuthName and Passuord are empty

_static/ajax-loader.gif

_images/contribute-git-push-tags.png
Transfer Options
[Force overwrite exi

Use thin pack (for slow network connections)
inciude tagd

branch (may discard changes)

Cancel

Push

_images/logo128x128.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to SCM Backup’s documentation!

 		
 Introduction

 		
 How does it work?

 		
 Installation

 		
 System Requirements

 		
 .NET Core 2.0

 		
 Source control software

 		
 Download

 		
 How to run

 		
 Configuration

 		
 General Options

 		
 localFolder

 		
 waitSecondsOnError

 		
 scms

 		
 Sources

 		
 GitHub

 		
 Restoring your backups

 		
 Restoring Git repositories

 		
 How a bare repository looks like

 		
 How to restore

 		
 How to Contribute

 		
 Contribute to the application

 		
 How to run the integration tests

 		
 Contribute to the documentation

 		
 Headlines

 		
 Making a new release

 		
 1. Determine the new version number

 		
 2. Release the application

 		
 3. Release the docs

 		
 Legal Stuff

 		
 License

 		
 Acknowledgements

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo64x64.png

_static/minus.png

_static/up-pressed.png

