
SCM Backup Documentation
Release 1.1.0

Christian Specht

Nov 16, 2018

Contents:

1 Introduction 3
1.1 How does it work? . 3

2 Installation 5
2.1 System Requirements . 5
2.2 Download . 5
2.3 How to run . 6

3 Configuration 7
3.1 General Options . 7
3.2 Sources . 8

4 Getting SCM Backup’s output 13
4.1 Logging . 13
4.2 Emailing output . 14

5 Restoring your backups 15
5.1 Restoring Git repositories . 15
5.2 Restoring Mercurial repositories . 16

6 How to Contribute 19
6.1 Contribute to the application . 19
6.2 Contribute to the documentation . 22
6.3 Making a new release . 23

7 Legal Stuff 25
7.1 License . 25
7.2 Acknowledgements . 25

8 Info for Bitbucket Backup users 27
8.1 Setup . 27
8.2 Configuration . 27
8.3 Emailing output . 28

i

ii

SCM Backup Documentation, Release 1.1.0

SCM Backup is a tool which makes offline backups of your cloud hosted source code repositories, by cloning them.

• Source code

• Website

• Download latest release

It’s written in .NET Core, which means it’s supposed to run on Windows, Linux and MacOS.

Contents: 1

https://github.com/christianspecht/scm-backup/
http://scm-backup.org/
http://scm-backup.org/downloads/
https://dotnet.github.io/

SCM Backup Documentation, Release 1.1.0

2 Contents:

CHAPTER 1

Introduction

SCM Backup is a tool which makes offline backups of your cloud hosted source code repositories, by cloning them.

It’s free and open source!

It supports backing up from multiple source code hosters and backing up multiple users/teams per source code hoster.

At the moment, the following hosters are supported:

• GitHub

• Bitbucket

1.1 How does it work?

SCM Backup uses the respective hoster’s API to get a list of all your repositories hosted there.

Then, it uses the respective SCM (e.g. Git and/or Mercurial, which need to be installed on your machine if you have at
least one repository of the given type) to clone every repository into your local backup folder - or just pull the newest
changes, if it already is in your local backup folder.

GitHub and Bitbucket repositories can have wikis, which are separate repositories and will be backed up as well.

3

https://github.com/
https://bitbucket.org/
https://git-scm.com/
https://www.mercurial-scm.org/

SCM Backup Documentation, Release 1.1.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 System Requirements

2.1.1 .NET Core 2.0

SCM Backup is written in .NET Core, the cross-platform version of .NET.

The available releases are framework-dependent deployments, which means that the same download should work on
any Windows, Linux and MacOS machine, as long as .NET Core is installed on it.

If it’s not on your machine, you can get it from the official download page. You need at least version 2.0 of the .NET
Core runtime.

Note: So far, SCM Backup has been written and tested on Windows only. Technically, it should run on Linux and
MacOS as well, but this has not been tested yet.

2.1.2 Source control software

SCM Backup doesn’t come with its own versions of Git and/or Mercurial, so the respective SCM needs to be installed
on your machine if you have at least one repository of the given type.

By default, SCM Backup expects all source control software to be in your path, so it just needs to execute git, hg
etc. without a complete path, although it’s possible to specify the path to the executable in the config.

Note that at runtime, SCM Backup checks the presence of all required SCMs on your system. It will stop if you have
repositories needing a SCM which is not present on your system.

2.2 Download

At the moment, there are only .zip downloads.

5

https://dotnet.github.io/
https://docs.microsoft.com/en-us/dotnet/core/deploying/
https://www.microsoft.com/net/download
https://git-scm.com/
https://www.mercurial-scm.org/

SCM Backup Documentation, Release 1.1.0

Download the .zip file from the latest release and unzip it into a folder of your choice.

2.3 How to run

Warning: You should edit the configuration file before running SCM Backup for the first time!

Read the guide for more information.

The actual application is in the ScmBackup.dll library. You can execute it with the dotnet command:

dotnet ScmBackup.dll

For Windows, there’s a batch file named ScmBackup.bat which does exactly that.

6 Chapter 2. Installation

https://github.com/christianspecht/scm-backup/releases/latest

CHAPTER 3

Configuration

SCM Backup is configured in YAML, by editing the config file settings.yml.

Note: SCM Backup automatically makes a backup of its own configuration.

On each run, the following files are copied to the backup folder, into a subfolder named _config:

• settings.yml

• The logger’s config file

3.1 General Options

3.1.1 localFolder

The folder (on the machine where SCM Backup runs) where all the backups will be stored.

The folder must already exist, SCM Backup won’t create it.

Example:

localFolder: 'c:\scm-backup'

3.1.2 waitSecondsOnError

When an error occurs, SCM Backup will wait that many seconds before exiting the application.

Example:

waitSecondsOnError: 5

7

https://en.wikipedia.org/wiki/YAML

SCM Backup Documentation, Release 1.1.0

3.1.3 scms

SCM Backup uses the source control software already installed on your system. By default, it assumes that the required
SCMs are installed in your path.

If this isn’t the case, or if you have multiple versions of the same SCM on your system and want SCM Backup to use
a specific one, you can specify the complete path to the executable in the config file.

Example:

scms:
- name: git
path: 'c:\git\git.exe'

3.1.4 email

Settings for sending log information via email.

By default, the whole section is commented out via #. To enable it, remove the comments so it looks like this:

email:
from: from@example.com
to: to@example.com
server: smtp.example.com
port: 0
useSsl: false
userName: testuser
password: not-the-real-password

Fill all settings with the proper values for your server.

SCM Backup will try sending emails when an un-commented email section exists in the configuration.

3.2 Sources

SCM Backup is able to backup from multiple source code hosters, and multiple accounts per hoster.

For example, your GitHub user may be a member of an organization, and you may want to backup all repositories of
your user, and all repositories of that organization.

In SCM Backup terms, these would be two different sources: your GitHub user would be one source, and the organi-
zation would be a second one.

You can define as many sources as you want in the config file, in this format:

sources:

- title: some_title
hoster: github
type: user
name: your_user_name

- title: another_title
hoster: github
type: org
name: your_org_name

8 Chapter 3. Configuration

https://help.github.com/articles/about-organizations/

SCM Backup Documentation, Release 1.1.0

Each source must have at least those four properties:

title

Must be unique in the whole config file.

For each source, SCM Backup will create a sub-folder named like the source’s title in the main backup
folder.

hoster

The source code hoster from which you want to backup. See the sub-pages for valid values for each
hoster.

type

Either user or org, depending if you want to backup an user or a organization.

name

The name of the user/organization you want to backup.

There are more possible options (for authentication, for example), but these can vary depending on the source code
hoster.

See the respective sub-page for detailed documentation per hoster:

3.2.1 GitHub

Configuration settings for backing up repositories from GitHub.

Warning: Known limitations:

• Issues are not backed up

Sources

For the basics, please read the Sources section first.

For GitHub, the hoster entry in the config file needs to look like this:

hoster: github

Authentication

Without authentication, SCM Backup can only backup your public repositories.

In this case, it shows a warning:

To backup your private repositories as well, you need to authenticate:

• To backup a user’s repositories, you need to authenticate with that user.

3.2. Sources 9

https://github.com/christianspecht/scm-backup/issues/12

SCM Backup Documentation, Release 1.1.0

• To backup an organization’s repositories, you need to authenticate with a user who has sufficient permissions to
that organization’s repositories.

Create a personal access token for SCM Backup for that user:

1. In the user’s settings on GitHub, go to Developer settings Personal access tokens and create a new token. Give
it at least the repo:status scope.

This scope allows SCM Backup to get a list of that user’s repositories via the GitHub API (read more
about scopes).

2. Put the username and the token into the authName and password properties of the source in the config file.

Example:

sources:

- title: some_title
hoster: github
type: org
name: your_org_name
authName: your_user_name
password: your_token

This will backup the repositories of the organization your_org_name, but authenticate with the
user your_user_name.

3.2.2 Bitbucket

Configuration settings for backing up repositories from Bitbucket.

Warning: Known limitations:

• Issues are not backed up

Sources

For the basics, please read the Sources section first.

For Bitbucket, the hoster entry in the config file needs to look like this:

hoster: bitbucket

Authentication

Without authentication, SCM Backup can only backup your public repositories.

In this case, it shows a warning:

To backup your private repositories as well, you need to authenticate:

10 Chapter 3. Configuration

https://github.com/blog/1509-personal-api-tokens
https://github.com/settings/tokens
https://github.com/settings/tokens/new
https://developer.github.com/v3/
https://developer.github.com/apps/building-oauth-apps/scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/scopes-for-oauth-apps/

SCM Backup Documentation, Release 1.1.0

• To backup a user’s repositories, you need to authenticate with that user.

• To backup a team’s repositories, you need to authenticate with a user who has sufficient permissions to that
team’s repositories.

Create an app password for SCM Backup for that user:

1. In the user’s settings on Bitbucket, go to the App passwords area (https://bitbucket.org/account/
user/YOUR-USERNAME/app-passwords) and create a new app password. Give it at least the following
permissions:

• Account: Read

• Repositories: Read

• Issues: Read

• Wikis: Read and write

2. Put the username and the app password into the authName and password properties of the source in the
config file.

Example:

sources:

- title: some_title
hoster: bitbucket
type: org
name: your_team_name

(continues on next page)

3.2. Sources 11

https://confluence.atlassian.com/bitbucket/app-passwords-828781300.html

SCM Backup Documentation, Release 1.1.0

(continued from previous page)

authName: your_user_name
password: your_app_password

This will backup the repositories of the team your_team_name, but authenticate with the user
your_user_name and the app password.

3.2.3 ignoreRepos

Optional: For each source, you can specify a list of repositories you do not want to be backed up.

Example:

sources:

- title: some_title
hoster: github
type: user
name: your_user_name
ignoreRepos:

- repo1
- Some-Other-Repo

Note:

• The repository names are case-sensitive!

• For hosters where the repositories are “sub-items” of the users (like GitHub), you just need to specify the
repository name, not the user name (i.e. repo instead of user/repo).

12 Chapter 3. Configuration

CHAPTER 4

Getting SCM Backup’s output

For use cases where SCM Backup is running unattended, there are multiple options to get the output:

4.1 Logging

SCM Backup uses NLog for logging.

All console outputs are also generated via logging (with a CompositeLogger which logs to the console and to NLog).

So all console outputs are in the log files as well.

4.1.1 Log levels

To keep it simple, SCM Backup only has four log levels.

The ConsoleLogger outputs all levels except Debug.

The NLogLogger maps SCM Backup’s log levels to a subset of NLog’s log levels.

NLog is configured via NLog’s regular NLog.config file, so all possible NLog configuration settings apply.

For example, you can change the minimal log level to Debug (default: Info), to log additional information.

4.1.2 Log files

The log files are in a subfolder named logs in SCM Backup’s application folder.

On each application start, a new log file (scm-backup.log) is generated.

Old files are available in the archive subfolder.

13

http://nlog-project.org/
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/CompositeLogger.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/ConsoleLogger.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/NLogLogger.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/ErrorLevel.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/ConsoleLogger.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/NLogLogger.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/NLog.config
https://github.com/nlog/NLog/wiki/Configuration-file

SCM Backup Documentation, Release 1.1.0

4.2 Emailing output

The same information which is logged to the console and to the log files, can be sent via email as well.

You need to provide the SMTP settings, as well as the From and To email adresses, in the email section in the config
file.

If this is set, SCM Backup will send a mail to the specified adress after each finished backup.

14 Chapter 4. Getting SCM Backup’s output

CHAPTER 5

Restoring your backups

Generally, SCM Backup creates local repositories and pulls from the remote repositories into the local ones.

Those local repositories are bare repositories, i.e. they don’t contain a working directory.

When you look inside the repository directories, you’ll see some directories and files, depending on whether it’s a
Git/Mercurial/etc. repository.

Your complete history and your source code are in there - you just don’t see the actual files!

The repository is backed up without a working directory, because it’s not necessary.

All the data already exists inside the repository, a second copy of everything in the working directory would just be a
waste of space.

The easiest way to restore your working directory is to clone the bare repository that SCM Backup created (called
bare-repo in the examples), which will create a clone with a working directory (called working-repo in the
examples).

For more details, please see the sub-page for the respective SCM:

5.1 Restoring Git repositories

5.1.1 How a bare repository looks like

It contains a few folders (objects, refs. . .) and some files:

15

SCM Backup Documentation, Release 1.1.0

5.1.2 How to restore

Clone the bare repository into a “regular” one:

git clone bare-repo working-repo

working-repo will have a working directory.

5.2 Restoring Mercurial repositories

5.2.1 How a bare repository looks like

It contains a single folder named .hg:

5.2.2 How to restore

Clone

Clone the bare repository into a “regular” one:

hg clone bare-repo working-repo

working-repo will have a working directory.

Update

Updating a bare repo to any revision will create a working directory in that repository.

To do this, hg update to any revision. For the newest revision, update to tip (a tag which points to the latest
commit):

16 Chapter 5. Restoring your backups

SCM Backup Documentation, Release 1.1.0

cd bare-repo
hg update tip

In TortoiseHG, right-click on any revision Update.

5.2. Restoring Mercurial repositories 17

SCM Backup Documentation, Release 1.1.0

18 Chapter 5. Restoring your backups

CHAPTER 6

How to Contribute

6.1 Contribute to the application

6.1.1 How to run the integration tests

For each supported hoster, SCM Backup needs to:

• make API calls to get a list of repositories

• use Git/Mercurial etc. to clone repositories

So there are integration tests for each hoster which do these things as well, some of them with authentication.

We created test users especially for these tests (for example: user and organization used for GitHub integration tests),
but of course we can’t publish their passwords.

So in order to run any of these integration tests, you need to setup your own test users and test repositories.

SCM Backup’s integration tests read the users, password etc. from a file named environment-variables.ps1
in the main project directory, which is not in the repository.

You need to create your own by copying/renaming environment-variables.ps1.sample, and changing the values.

6.1.2 Implementing a new hoster

Steps how to implement support for backing up a new source code hoster, using the implementation for Bitbucket as
an example.

Basics

In the ScmBackup project, create a new subfolder in the “Hosters” folder and name it like the hoster you are imple-
menting, e.g. Bitbucket.

Inside the folder, create the classes listed below.

19

https://github.com/scm-backup-testuser/
https://github.com/scm-backup-testorg
https://github.com/christianspecht/scm-backup/blob/master/environment-variables.ps1.sample
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup/Hosters

SCM Backup Documentation, Release 1.1.0

Note: SCM Backup uses naming conventions to put everything together, so make sure that:

• all classes have exactly the same prefix

• the part after the prefix is exactly like in the examples below

Note: To see examples, take a look at:

• the respective classes of the existing hosters

– Examples: GitHub, Bitbucket

• their tests:

– ...ConfigSourceValidatorTests in the unit tests

– ...ApiTests/...BackupTests in the integration tests

Hoster

• Example class name: BitbucketHoster

• Must implement IHoster

ConfigSourceValidator

Validates all config sources for that hoster.

• Example class name: BitbucketConfigSourceValidator

• Must inherit from ConfigSourceValidatorBase, which implements IConfigSourceValidator
and contains “default” rules which apply to all hosters

• Tests: Create a new class in ScmBackup.Tests.Hosters which inherits from
IConfigSourceValidatorTests

Api

• Example class name: BitbucketApi

• Must implement IHosterApi

• Should call the hoster’s API and return a list of repository metadata for the current user or organization

• Tests: Create a new class in ScmBackup.Tests.Integration.Hosters which inherits from
IHosterApiTests

Backup

• Example class name: BitbucketBackup

• Must inherit from BackupBase, which implements IBackup and creates the actual backups by cloning the
repositories.

• Tests: Create a new class in ScmBackup.Tests.Integration.Hosters which inherits from
IBackupTests

20 Chapter 6. How to Contribute

https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup/Hosters/Github
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup/Hosters/Bitbucket
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup.Tests/Hosters
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup.Tests.Integration/Hosters

SCM Backup Documentation, Release 1.1.0

Note: When a hoster supports multiple SCMs, you want to test backups with all of them, so you should create a
separate test class for each SCM.

An example for this is Bitbucket, which supports Git and Mercurial, so there are BitbucketBackupGitTests and Bit-
bucketBackupMercurialTests.

More about the tests

The base classes for the tests (IConfigSourceValidatorTests, IHosterApiTests, IBackupTests)
contain all the tests and a few properties, some of them abstract or virtual.

The child classes just need to inherit from the respective base class and fill the properties (for repo URLs, commit IDs
etc.).

So the same tests are executed for each IConfigSourceValidator, IHosterApi and IBackup implementa-
tion (please see also How to run the integration tests).

Note: For special cases, which only apply to a certain implementation, you can create additional tests directly in the
child class instead of the base classes.

One example for this is the Github API. There’s a special quirk which only occurs in the Github API.

Because of this, we have a special integration test for this, directly in the GithubApiTests class, so it’s only executed
there, and not for all IHosterApi implementations.

Documentation

Add the hoster to the lists on the website’s front page, and on the Introduction page in this documentation.

6.1.3 Implementing a new SCM

Note: To see example code, take a look at the existing SCM implementations and their tests:

• GitScm / GitScmTests

• MercurialScm / MercurialScmTests

Add ScmType

Add the new SCM to the ScmType enum.

IScm implementation

In the ScmBackup project, create a new class in the “Scm” folder. Name it like the SCM you are implementing, e.g.
GitScm

The class must implement the interface IScm.

6.1. Contribute to the application 21

https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Hosters/BitbucketBackupGitTests.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Hosters/BitbucketBackupMercurialTests.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Hosters/BitbucketBackupMercurialTests.cs
https://github.com/christianspecht/scm-backup/issues/13
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Hosters/GithubApiTests.cs
https://github.com/christianspecht/scm-backup-site/blob/master/index.md
https://github.com/christianspecht/scm-backup-docs/blob/master/source/intro.rst
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/Scm/GitScm.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Scm/GitScmTests.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/Scm/MercurialScm.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup.Tests.Integration/Scm/MercurialScmTests.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/ScmType.cs
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup/Scm
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/Scm/IScm.cs

SCM Backup Documentation, Release 1.1.0

When the respective SCM has a command-line tool (like most current SCMs do), the easiest way to implement the
class is by inheriting from the abstract CommandLineScm class.

(CommandLineScm handles the plumbing to actually execute the command line tool, including looking for the
executable at the path specified in the config)

ScmAttribute

All SCM implementations need to have an attribute, so SCM Backup is able to properly recognize them.

Apply the ScmAttribute to the class and set the Type parameter to the ScmType you added in the first step.

Example for Git:

namespace ScmBackup.Scm
{

[Scm(Type = ScmType.Git)]
internal class GitScm : CommandLineScm, IScm
{

}
}

Integration tests

In the ScmBackup.Tests.Integration project, create a new test class in the Scm folder which inherits from
IScmTests. Name it accordingly, e.g. GitScmTests.

IScmTests contains all the tests and a few abstract properties for repo URLs, commit IDs etc.

The child classes just need to set these, so the same tests are executed for all IScm implementations.

Please see also How to run the integration tests.

6.2 Contribute to the documentation

The documentation is built with Sphinx and hosted on Read the Docs.

The source code is here on GitHub.

6.2.1 Headlines

To make sure that the Read the docs Sphinx theme renders correctly, it’s important that the headline styling is consistent
across the whole documentation.

SCM Backup’s documentation uses these stylings:

• ===== for level 1 (the top headline of each page)

• ----- for level 2

• +++++ for level 3

22 Chapter 6. How to Contribute

https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/Scm/CommandLineScm.cs
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/Scm/ScmAttribute.cs
https://github.com/christianspecht/scm-backup/tree/master/src/ScmBackup.Tests.Integration/Scm
http://www.sphinx-doc.org/
http://readthedocs.org/projects/scm-backup-docs/
https://github.com/christianspecht/scm-backup-docs/
https://sphinx-rtd-theme.readthedocs.io/en/latest/configuring.html#how-the-table-of-contents-builds
https://sphinx-rtd-theme.readthedocs.io/en/latest/configuring.html#how-the-table-of-contents-builds

SCM Backup Documentation, Release 1.1.0

6.3 Making a new release

To make a new release version, the following steps must be followed:

6.3.1 1. Determine the new version number

SCM Backup uses Semantic Versioning.

The new version number must be in “three-digit” MAJOR.MINOR.PATCH format, for example 1.0.0 !!

6.3.2 2. Release the application

Each push to master creates a new CI build on AppVeyor anyway.

Create a new release by creating a Git tag in the main repository with the new version number.

The CI build will recognize this and automatically use this version number to create a new GitHub release.

Note: Don’t forget to actually push the tag! Git doesn’t do this automatically.

• From the command line, it’s git push origin 1.0.0.

• In Git GUI, you need to set this checkbox when pushing:

6.3.3 3. Release the docs

• Set the version and release numbers in the Sphinx configuration file conf.py to the new version number.

Set version to the short X.Y format, e.g. 1.0.

Set release to the full three-digit format determined in step 1, e.g. 1.0.0.

Apparently Read the Docs uses this number at least in the automatically created PDF.

• Create the same “version number” Git tag (like in the main repository) in the documentation repository as well.

This will create a version of the documentation for this release, making use of Read the Docs’ ver-
sioning capabilities.

6.3. Making a new release 23

https://semver.org/
https://ci.appveyor.com/project/ChristianSpecht/scm-backup
https://github.com/christianspecht/scm-backup
https://github.com/christianspecht/scm-backup/releases
https://git-scm.com/docs/git-gui
http://www.sphinx-doc.org/en/stable/config.html#confval-version
http://www.sphinx-doc.org/en/stable/config.html#confval-release
https://github.com/christianspecht/scm-backup-docs/blob/master/source/conf.py
http://docs.readthedocs.io/en/latest/versions.html
http://docs.readthedocs.io/en/latest/versions.html

SCM Backup Documentation, Release 1.1.0

24 Chapter 6. How to Contribute

CHAPTER 7

Legal Stuff

7.1 License

SCM Backup is licensed under the GPL.

7.2 Acknowledgements

SCM Backup uses the following OSS projects:

• Json.NET

• MailKit

• NLog

• Octokit

• RichardSzalay.MockHttp

• Simple Injector

• xUnit.net

• YamlDotNet

Special thanks to Steven for invaluable advice.

25

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.newtonsoft.com/json
https://github.com/jstedfast/MailKit
http://nlog-project.org/
http://octokit.github.io/
https://github.com/richardszalay/mockhttp
https://simpleinjector.org
https://xunit.github.io/
https://github.com/aaubry/YamlDotNet
https://github.com/dotnetjunkie
https://github.com/simpleinjector/SimpleInjector/issues/256

SCM Backup Documentation, Release 1.1.0

26 Chapter 7. Legal Stuff

CHAPTER 8

Info for Bitbucket Backup users

Bitbucket Backup is a previous application written by the author of SCM Backup. It’s similar to SCM Backup, but
limited to Bitbucket and one user or team only.

Here is some useful information for Bitbucket Backup users switching to SCM Backup:

8.1 Setup

Bitbucket Backup is written in .NET 4, SCM Backup is written in .NET Core; see the different System Requirements.

Plus, there’s no MSI setup anymore, just a zip file with the binaries.

8.2 Configuration

When you run Bitbucket Backup for the first time, it asks for all configuration values and stores them in the user’s
settings.

SCM Backup is able to backup multiple accounts from multiple hosters, so asking for all the config values at runtime
isn’t practical anymore.

Instead, you save them all into a configuration file.

A minimal working configuration file to backup your Bitbucket user would look like this:

localFolder: 'c:\your-backup-folder' # your backups are stored here

sources:

- title: some_title # must be unique in the whole config file, will be used as
→˓subfolder name

hoster: bitbucket
type: user

(continues on next page)

27

https://christianspecht.de/bitbucket-backup/

SCM Backup Documentation, Release 1.1.0

(continued from previous page)

name: your_user_name
authName: your_user_name
password: your_app_password

. . . or like this for a team:

localFolder: 'c:\your-backup-folder'

sources:

- title: some_other_title
hoster: bitbucket
type: org
name: your_team_name
authName: your_user_name
password: your_app_password

. . . or like this to backup both the user and the team (which Bitbucket Backup can’t do):

localFolder: 'c:\your-backup-folder'

sources:

- title: some_title
hoster: bitbucket
type: user
name: your_user_name
authName: your_user_name
password: your_app_password

- title: some_other_title
hoster: bitbucket
type: org
name: your_team_name
authName: your_user_name
password: your_app_password

Read more about possible settings for sources and Bitbucket.

8.3 Emailing output

Like Bitbucket Backup, SCM Backup is able to send an email with log information, but the configuration is different.
See how it’s done in SCM Backup.

Bitbucket Backup takes advantage of SmtpClient’s ability to read configuration file settings by itself.

So all possible options for <mailSettings> were available, and Bitbucket Backup didn’t need to bother to support
or even know about them all, because SmtpClient directly read them from the app’s config file.

Apparently this is not possible in .NET Core and maybe SmtpClient is kind of deprecated anyway, so SCM Backup
is using MailKit instead, which doesn’t read values from the config and never will.

So SCM Backup has to know about every possible config value, and time will tell whether those available now will
work for everyone.

28 Chapter 8. Info for Bitbucket Backup users

https://docs.microsoft.com/en-us/dotnet/api/system.net.mail.smtpclient.-ctor?view=netframework-4.7.2#System_Net_Mail_SmtpClient__ctor
https://docs.microsoft.com/de-de/dotnet/framework/configure-apps/file-schema/network/mailsettings-element-network-settings
https://github.com/dotnet/corefx/issues/12537
https://github.com/dotnet/docs/issues/1876
https://github.com/jstedfast/MailKit
https://github.com/jstedfast/MailKit/issues/630#issuecomment-357670414
https://github.com/christianspecht/scm-backup/blob/master/src/ScmBackup/ConfigEmail.cs

	Introduction
	How does it work?

	Installation
	System Requirements
	Download
	How to run

	Configuration
	General Options
	Sources

	Getting SCM Backup’s output
	Logging
	Emailing output

	Restoring your backups
	Restoring Git repositories
	Restoring Mercurial repositories

	How to Contribute
	Contribute to the application
	Contribute to the documentation
	Making a new release

	Legal Stuff
	License
	Acknowledgements

	Info for Bitbucket Backup users
	Setup
	Configuration
	Emailing output

